The Signaling Adaptor Protein CD3 Is a Negative Regulator of Dendrite Development in Young Neurons

نویسندگان

  • Stéphane J. Baudouin
  • Julie Angibaud
  • Gildas Loussouarn
  • Virginie Bonnamain
  • Akihiro Matsuura
  • Miyuki Kinebuchi
  • Philippe Naveilhan
  • Hélène Boudin
  • Jean Monnet
چکیده

A novel idea is emerging that a large molecular repertoire is common to the nervous and immune systems, which might reflect the existence of novel neuronal functions for immune molecules in the brain. Here, we show that the transmembrane adaptor signaling protein CD3ζ, first described in the immune system, has a previously uncharacterized role in regulating neuronal development. Biochemical and immunohistochemical analyses of the rat brain and cultured neurons showed that CD3ζ is mainly expressed in neurons. Distribution of CD3ζ in developing cultured hippocampal neurons, as determined by immunofluorescence, indicates that CD3ζ is preferentially associated with the somatodendritic compartment as soon as the dendrites initiate their differentiation. At this stage, CD3ζ was selectively concentrated at dendritic filopodia and growth cones, actin-rich structures involved in neurite growth and patterning. siRNA-mediated knockdown of CD3ζ in cultured neurons or overexpression of a loss-of-function CD3ζ mutant lacking the tyrosine phosphorylation sites in the ITAMs increased dendritic arborization. Conversely, activation of endogenous CD3ζ by a CD3ζ antibody reduced the size of the dendritic arbor. Altogether, our findings reveal a novel role for CD3ζ in the nervous system, suggesting its contribution to dendrite development through ITAM-based mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The signaling adaptor protein CD3zeta is a negative regulator of dendrite development in young neurons.

A novel idea is emergxsing that a large molecular repertoire is common to the nervous and immune systems, which might reflect the existence of novel neuronal functions for immune molecules in the brain. Here, we show that the transmembrane adaptor signaling protein CD3zeta, first described in the immune system, has a previously uncharacterized role in regulating neuronal development. Biochemica...

متن کامل

An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning

The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7(Fbxw8) localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7(Fbxw8) by independent approaches including ...

متن کامل

Reelin Promotes Hippocampal Dendrite Development through the VLDLR/ApoER2-Dab1 Pathway

Reelin is a secreted glycoprotein that regulates neuronal positioning in cortical brain structures through the VLDLR and ApoER2 receptors and the adaptor protein Dab1. In addition to cellular disorganization, dendrite abnormalities are present in the brain of reeler mice lacking Reelin. It is unclear whether these defects are due primarily to cellular ectopia or the absence of Reelin. Here we e...

متن کامل

Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus.

Adult hippocampal neurogenesis is thought to be essential for learning and memory, and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an e...

متن کامل

Changes in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine

Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008